
The Story Point - 01-24-2018
by Benny Bottema - http://52.48.96.241

The Story Point

by Benny Bottema - Wednesday, January 24, 2018

http://52.48.96.241/2018/01/24/the-story-point/

Considering the discussion regarding story points keep popping up, I felt the need to comprehensively
write down what I feel is the value of a story point. Everything is up for discussion.

Contents

1 What’s in a number
2 How a story point relates to time

2.1 Velocity is never constant
2.2 Sprint zero

3 How to estimate a user story
3.1 User Stories vs (Technical) Tasks
3.2 The definition of ‘amount of work’ / story point
3.3 Story points vs business value
3.4 Efficiency translates to velocity, not estimations

3.4.1 The reality is: the human brain inevitably relies on gut feeling for estimations
3.5 External factors influence capacity, not velocity

4 How to compare teams

What’s in a number

A story point is an arbitrary measure of work by Scrum teams, which is used to measure the effort
required to implement a story. In simple terms it is a number that tells the team how hard the story is,
where hard is a combination of complexity and effort.

The numbers must be in the Fibonacci range, because as the estimation goes up so does the error margin.
To compensate our natural false confidence in estimating the Fibonacci range explicitly doesn’t allow for
precise estimation; rather it goes up exponentially. Another reason why this Fibonacci range works so
well is that complexity doesn’t scale linearly, yet humans tend to assume so.

Story points are not directly related to time at all, it is about ratios more than the number itself. Story B
might be twice the size of story A for example, the stories then can be estimated as 1 and 2, or 3 and 8 (at
least double according to Fibonacci). A team might say: last sprint we did Story B, for the same amount
of work we can do story C and D. There’s no time involved here, just number ratios (or relative
estimates).

The best thing about it is that we can have individuals with wildly different skill sets or speed agree on

 1 / 6

http://52.48.96.241/2018/01/24/the-story-point/
https://en.wikipedia.org/wiki/Fibonacci_number
http://blog.muonlab.com/2012/04/12/why-you-suck-at-estimating-a-lesson-in-psychology/
https://www.mountaingoatsoftware.com/blog/the-main-benefit-of-story-points

The Story Point - 01-24-2018
by Benny Bottema - http://52.48.96.241

the amount of work for a story. It is a universal estimation technique.

How a story point relates to time

If a story point is not directly related to time, then how can you tell how much work a team can do in a
sprint? After all, a sprint is a fixed time box so we end up converting amount of work to a timeline,
there’s no way around this need for planning unless you do Kanban.

After a fixed time you can see how many story points have been delivered and the result is called the
velocity, like 15 points per week. It’s an indicator of throughput. However, you will never be able to tell
how much time a specific story or story point will take. You can try based on past performance, but as the
velocity is based on the team’s average, including general external factors, a single story will never be
entirely predictable. All you can say is: “for a sprint of 3 weeks, we are pretty confident we can deliver
this much work.” (but under promise and over deliver)

Velocity is never constant

Velocity is always team based, averaging the individual speeds. As long as the general setup of the team
remains the same (1 senior, 2 juniors, 3 devs, 1 test etc.), the velocity should be somewhat stable and
dependable, extreme external disturbances during a sprint notwithstanding. So if you swap out a medior
with another medior, the change should not affect the velocity much in a team of 8 members.

Velocity is influenced by many factors, such as develop skills, number of developers, down time of TEST
/ Bamboo / SVN, communication issues, changing requirements, meetings, sickness, unexpected extra
work etc. etc. By taking the average velocity of multiple sprints you can get a cautious suggestion of what
a team is capable of in a single sprint. However, know that the environment is always changing, and a
velocity of any given single sprint is really a snapshot and should only be used pessimistically.

Sprint zero

When a team just forms, to get a feel for how many points a it can do in a sprint, the team members don’t
plan at all; they just estimate a bunch of work. They just start and see how many points are finished at the
end. That then becomes the initial velocity and serves as a basis for planning the next sprint.

How to estimate a user story

To be able to assign a number to a story point you need a baseline, a reference story. The numbers in the
baseline are not really important, as long as you don’t end up going above 100 with estimations. If a
simple task is baselined at 55 story points, then a more complex task ends up being over a 100. This
should be avoided.

User Stories vs (Technical) Tasks

Often, we poker once we have an oral consensus on a detailed technical on-the-spot analyses. It is only
natural: team members and especially developers feel more confident about an estimate if they know

 2 / 6

https://www.mountaingoatsoftware.com/blog/the-main-benefit-of-story-points
https://hackerchick.com/kanban-is-the-new-scrum/
https://stwunder.wordpress.com/tag/reference-user-story/

The Story Point - 01-24-2018
by Benny Bottema - http://52.48.96.241

exactly what they need to do on a technical level. This is the reason why developers often rule the sprint
plannings and other roles are present as witnesses rather than first class participants.

Ideally however, Scrum tells us we shouldn’t estimate technicalities, but rather we should estimate
functional pieces. After all a User Story represents a functional concept from a customer perspective (“As
a user I can…”). These functional stories should be estimated without knowing too much about it
technically. This way everybody’s input becomes equally important. After estimating how much
functionality we think we can do, the developers split up the stories into (technical) tasks.

I have never seen this approach in the wild, though. Somehow all the teams I have been part of gravitate
towards technical analyses sessions after which a very precise poker planning is done mostly by the
developers. My instincts tell me that the ‘pure’ approach only works for small companies where the
technical challenges are smaller and integrations with other systems are fewer. The more complex a
system becomes, the more you need to know about the technical details in order to give a realistic
estimation of required effort in story points.

The definition of ‘amount of work’ / story point

It turns out the definition of amount of work is a moving target and not fixed at all. A team might say:
“creating a new web service is 13 points”, but it turns out teams don’t stick to this definition in practice.
In my experience teams invariably start to reduce the number of points the better or easier the task
becomes. This is so, because the team perceives the work as less work and often it also really is up to a
certain degree; it’s not uncommon to hear the phrase: “oh I have done this before, it’s easy now”, or:
“oh, we can just copy paste it from the other project, it’s just 1 point”, or: “we have never done this
before, let’s add 3 points”. The problem then is how do we estimate using reference stories.

A reference story is a story as if you do it from scratch. A reference story is to be used early in a project.
Later on, a team’s implemented stories from previous sprints become the new reference stories and you
will have a larger pool to compare to: “we don’t have a reference story for this, but last month we did this
for 5 points”.

It’s a false conclusion to say: “we have become more efficient at creating web services using copy/paste,
so instead of reducing the number of story points, we state that our velocity is higher”. It is false,

because the actual work is not the same. Copy pasting is not the same amount of work as create a web
service from scratch and so you shouldn’t treat it as such. We should estimate the actual work involved,

because that is what a story point is about.

Story points vs business value

Often I see that story points are interpreted as business value. They are not. It is entirely possible to
realize 20 story points while offering no business value. The reverse is true as well: you can realize 1sp
while offering serious business value.

 3 / 6

The Story Point - 01-24-2018
by Benny Bottema - http://52.48.96.241

Business value should be assigned separately if you want to keep track of it for reporting purposes or
quick overviews. During backlog grooming sessions, where the user stories are prioritized in advance, a
product owner will often have a good idea of the more important stuff, but it can help to have the business
value stated explicitly. This is more for the product owner and internal business discussions rather than
the estimating implementation efforts; the team just estimates amount of work and the product owner
distributes it among sprints.

Another widely system used to indicate business value, or priority to be more precise, is a flag
indicating minor, major, critical, blocking etc. Platforms such a Atlassian’s JIRA has this built in.

Efficiency translates to velocity, not estimations

Leaving aside the ‘actual work being reduced because of the copy/paste factor’ class of arguments,
estimations should never be modified because we became more efficient at some task. If creating a new
web service always requires certain essential steps, it will be the same work every time, regardless how
fast you have become at it. For the same reason you also shouldn’t increase an estimation because “we
have never done something like this before”, or: “we have to do some research first”. The amount of
work remains the same, but we simply don’t know how quickly we can do it. This will affect velocity,
but not the story estimation.

Rather than changing the estimation, your team’s velocity would automatically go up as you can do more
of the same work in a sprint compare to previous sprints.

Especially when research is needed, you should rather pull it out of the story as a time boxed spike. You
can’t put story points on a spike, because every spike is different. Spikes therefore should not be taken

into account when calculating velocity, but it does mean the sprint is shortened matching the time box (or
assign story points in hindsight based on the same velocity used to plan the sprint).

Ideally you should always estimate comparing to either reference stories or stories from previous sprints.
If you can’t find an exact match that’s fine, just try to relate your story in terms of effort. Try to avoid the
automatic switch to gut feelings, because that’s where a team starts to mess up estimates and include
invalid value modifiers. If you stick to this, your velocity should naturally go up over time as your team
becomes more efficient and experienced.

The reality is: the human brain inevitably relies on gut feeling for estimations

Unfortunately, sticking to reference stories or past stories is easier said than done. In fact so much easier
that I haven’t seen this followed through even once; teams always tend to forget about reference stories
and rely on gut feeling a few sprints in.

The Fibonacci range alleviates some of the off-estimation impact due to this, but really it indicates an
impedance mismatch between how teams operate -and indeed how humans think- and how Scrum experts
classically assert how estimates should be done. To do this properly, you would need a permanent Scrum

 4 / 6

The Story Point - 01-24-2018
by Benny Bottema - http://52.48.96.241

coach to act as estimation police, which goes against the very nature of agile development. You don’t
want that.

As always the real point is to be predictable, so for a single Sprint relying on gut feeling this might be
fine. It makes it difficult though to plan large releases many sprints ahead as many enterprise companies
do, since the unanchored-by-reference-stories gut feeling is a moving target. It also makes it impossible to
compare teams (more on that further down). One reason this occurs is because inherently teams are
concerned with the next sprint and not some dead line in a far-off sprint. This is by design, but the
company around the team often plans ahead much further and is concerned with this. This is the primary
reason why at the end of six sprints, business at large can be surprised why the estimations were so far
off. The Product Owner plays a key role here to keep business and development on the same page.

External factors influence capacity, not velocity

Some items you cannot estimate beforehand, such as production incidents: either these should be time-
boxed or these should be updated during the sprint to match reality, based on the same velocity used to
plan the sprint.

Story points are not about time, but about effort; production incidents take time but effort cannot be
estimated in advance. The two are incompatible. If you get an incident that paralyzes two developers for a
week, does it mean the team has a low velocity and the next sprint they should plan 20 story points less?
No! Velocity remains the same, because the team’s capability remains the same. Capacity however was
reduced. For the next Sprint the same velocity applies, but you might want to reconsider a team’s
capacity based on external factors.

The reason I keep these two concepts separated is because environmental factors tend to be incidental, yet
you want to know structurally what a team is capable of. Averaging multiple sprints alleviates the impact

of incidentally reduced capacity of a team, though, but having a ‘pure’ velocity helps plan better in my
opinion; it already is such moving target, let’s not muddle it further by including the effect of sickness,

you can’t plan for that.

One way of dealing with incidental team disruptions is to still assign placeholder story points for
incidents based on the current velocity (which effectively translates to reserving a timebox), but update
during the sprint to match reality, another way is to reserve an actual time-box for incidents and reduce
the Sprint duration / capacity (plan fewer story points).

An important goal of working with story points and sprints is about predictability. It is not a number
game nor is it a measurement of performance. The objective is that a team can say with confidence how

much work it think it can deliver in the next two-three weeks.

 5 / 6

The Story Point - 01-24-2018
by Benny Bottema - http://52.48.96.241

To be clear: it is not to say external factors are not part of a team’s core responsibilities. Especially in
DevOps obviously production incidents are part of their jobs. When it comes to predicting how much a
team can do and how much capacity it has, however, velocity should not be influenced by production
incidents. For example, a team can becomes twice as fast compared to when it started, even though they
do half the work because there are more production incidents (capacity, however, is down to one fourth
due to overwhelming external factors). Discuss!

How to compare teams

Because over time reference stories start to fade away in the background in favor of the actually
implemented stories in previous sprints, the actual unit size of a story point within a team starts to shift
ever so slightly. This is because teams start to rely more on ‘gut feeling’ rather than methodologically
compare past stories or even the reference stories. In my experience this just happens to all teams. And
stories never match exactly, so estimations are always relative. Because of this, doing a comparison
between teams, even if their reference stories are the same, is like comparing apples to oranges.

Another reason to avoid comparisons between teams is because there are too many external factors in
play. An absolute nono is to expect a certain performance from one team based on the velocity of another
team!

Never make a team feel they should do more either, because velocity is easily gamed too. I’ve
experienced it several times that a team’s seemingly low performance was presented as a graph next to a
team that performed well, only to have the first team increase estimates and ‘game’ the system. A team’s
performance is not bad or good, it just is. Let the team do its thing and if something is not right, it will
come from the team itself (preferably during retro’s).

Use velocity to gain insight about teams, not to steer teams.

PDF generated by Kalin's PDF Creation Station

Powered by TCPDF (www.tcpdf.org)

 6 / 6

http://www.extremeuncertainty.com/why-not-use-velocity-to-compare-teams/
http://www.extremeuncertainty.com/why-not-use-velocity-to-compare-teams/
http://www.tcpdf.org

