
DWR in a Jiffy (quickstart tutorial) - 01-19-2008
by Benny Bottema - http://www.bennybottema.com

DWR in a Jiffy (quickstart tutorial)

by Benny Bottema - Saturday, January 19, 2008

http://www.bennybottema.com/2008/01/19/dwr-in-a-jiffy/

Direct Web Remoting, or DWR in short, is a technology that helps you ease the development of
javascript based applications using a Java server. What it does is simply sit in between your javascript and
your java classes and acts as marshaller for method calls from javascript to Java. In a nutshell: DWR
provides Remote Procedure Calls for javascript and is a great library for use in Ajax enabled
webapplications.

This isn’t yet another blogpost about what DWR exactly is or why it is so cool; the objective of my post
today is to simply set up a quick example of how to work with it. A quick tutorial if you will. I’m the
kind of guy that likes many examples and diagrams and whatnot to take apart and learn from, so here’s
my contribution to the ‘code by example’ paradigm. If you want to know more about DWR before
actually trying to use it, I suggest you check out the DWR homepage.

Contents

1 Setting the stage
2 Testing DWR
3 Using DWR on the client side
4 About DWR callbacks
5 Matching arguments types

Setting the stage

One of the cool things (two sentences and I already contradict myself :), is that it is so easy to setup, as
you will soon see. To get DWR to expose the classes to javascript, you first need to add the dwr library
and define the specific classes. Basically, this is a 3-step dance:

1. Drop the dwr.jar you’ve downloaded from directwebremoting.org in the lib folder of your
webapplication (ie. dwr.jar).

2. Add DWR to your web.xml as a servlet:

<servlet>
 <servlet-name>dwr-invoker</servlet-name>
 <display-name>DWR Servlet</display-name>
 <servlet-class>uk.ltd.getahead.dwr.DWRServlet</servlet-class>
 <init-param>

 1 / 4

http://www.bennybottema.com/2008/01/19/dwr-in-a-jiffy/
http://directwebremoting.org/dwr/index.html
https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Ajax_(programming)
http://directwebremoting.org/dwr/index.html
http://directwebremoting.org/dwr/downloads/index.html

DWR in a Jiffy (quickstart tutorial) - 01-19-2008
by Benny Bottema - http://www.bennybottema.com

 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>dwr-invoker</servlet-name>
 <url-pattern>/dwr/*</url-pattern>
</servlet-mapping>

3. Create a dwr.xml, which informs DWR about the classes you need exposed:

<dwr>
 <allow>
 <create creator="new" javascript="MyService">
 <param name="class" value="org.foo.MyServiceClass"/>
 </create>
 </allow>
</dwr>

Testing DWR

To check if you’ve done everything right, you can open up the DWR testpage http://localhost/dwr/ on
which all exposed classes and methods should be visible. Remember, this works because you configured
a DWR servlet that triggers on /dwr/*. If you click on any of the classes that are exposed, you’ll get a list
of methods that are available to you javascript and are ready for testing right away. Note that this is all
javascript already!

Specifying nothing but /dwr/ results in this testpage. But If you want to use a specific java class in your
own page to call methods on, you’d call /dwr/TheService. What happens is that the DWR library
dynamically generates all the required javascript to communicate with the server through this servlet,
runtime. Pretty cool huh?

Using DWR on the client side

To use the methods of the classes that are exposed through dwr.xml, you need to include a virtual
javascript file with the name of such an exposed class. Since the classes are identified with the javascript
attribute in dwr.xml, you’ll use that identifier when importing the javascript file. In addition to the
scriptfile for your javaclass, you need at least engine.js as well.

<script src="/dwr/interface/MyService.js" mce_src="/dwr/interface/MySe
rvice.js"></script>
<script src="/dwr/engine.js" mce_src="/dwr/engine.js"></script>

 2 / 4

DWR in a Jiffy (quickstart tutorial) - 01-19-2008
by Benny Bottema - http://www.bennybottema.com

There are some other useful scripts you can include from DWR, such as util.js, which has a couple of
nifty functions like $() (a shorthand version for document.getElementById()).

About DWR callbacks

To actually make use of the Java serviceclass, you simply call a method on the Myservice.js file. The
catch here is that you need to provide a callback function as well. This is because of the fact that
javascript runs asynchronously in the client and doesn’t wait for Java to come back with an answer.
Instead, DWR relies on the callback method you defined that will handle the result in due time. Note that
the function you call on the serviceclass.js has all the parameters as defined in the Java class, safe for the
callback parameter and peripheral parameters such as HttpSession or HttpRequest.

The callback function can only have one parameter, data, which bares the result of the DWR servicecall.

Take a look:

// call function on DWR generated service.js
MyService.getInfo(arg1, arg2, parseResult);

// callback function that parses whatever result comes back
function parseResult(data) {
 // do stuff with result data
}

On a side note, there are a couple of varying ways of calling a function on a serviceclass. For example,
you can have the callback function as first or last argument, or not at all. You can also specify a time-out
and some other options. For more details on check out the DWR page on this usage subject.

Matching arguments types

DWR already provides most common conversions such as Strings, Dates, Arrays (nested as well) and a
host of other types, including stuff like Vector. If you’d like to use your own type for a parameter, you
will need to create a javascript version with the same fields. Here’s an example:

// Java version:
public Person {
 private String name;
 private int age;
 private Date[] appointments;

 // getters and setters ...

 3 / 4

http://directwebremoting.org/dwr/introduction/scripting-dwr.html

DWR in a Jiffy (quickstart tutorial) - 01-19-2008
by Benny Bottema - http://www.bennybottema.com

}

// javascript version:
var person = {
 name:"Fred Bloggs",
 age:42,
 appointments:[new Date(), new Date("1 Jan 2008")]
};

MyService.setPerson(person);

To make these conversions possible, you need to inform DWR about these ‘custom’ classes. These so
called ‘beans’ allow DWR converters to marshal these classes from/to javascript.

More on DWR converters here:

/converters
/converters/bean
/converters/collection

PDF generated by Kalin's PDF Creation Station

Powered by TCPDF (www.tcpdf.org)

 4 / 4

http://directwebremoting.org/dwr/documentation/server/configuration/dwrxml/converters/index.html
http://directwebremoting.org/dwr/documentation/server/configuration/dwrxml/converters/bean.html
http://directwebremoting.org/dwr/documentation/server/configuration/dwrxml/converters/collection.html
http://www.tcpdf.org

