Waysto sort lists of objectsin Java based on multiple fields - 06-21-2013
by Benny Bottema - http://www.bennybottema.com

Waysto sort lists of objectsin Java based on multiple fields

by Benny Bottema - Friday, June 21, 2013

http://www.bennybottema.com/2013/06/21/ways-to-sort-lists-of-obj ects-in-java-based-on-multiple-fiel ds/

As| was again trying to remember how to sort alist of objectsin Java bases on multiple keys, | had the
luminousideato finally write it down.

We have alist of pizza's, and | want them sorted according to size, number of toppings and furthermore
by name. This means that there will be groups ordered by size and within those groups the pizza' s are
ordered into groups by number of toppings and in those groups the pizza's are ordered by name.

We want to end up with alist like this:

1.Pizza's 34cm:
2.Anchovy (34cm, tomato, cheese, Anchovies)
3.Prosciutto (34cm, tomato, cheese and ham)
4.Chicken Special (34cm, tomato, cheese, chicken and turkey pieces)
5.Vulcano (34cm, tomato, cheese, mushrooms and ham)
6. Peperone (34cm, tomato, cheese, mushrooms, ham, capsicum, chili peppers and onions)
7.Pizza's 30cm:
8.Anchovy (30cm, tomato, cheese, Anchovies)
9. Prosciutto (30cm, tomato, cheese and ham)
10.Chicken Specia (30cm, tomato, cheese, chicken and turkey pieces)
11.Vulcano (30cm, tomato, cheese, mushrooms and ham)
12. Peperone (30cm, tomato, cheese, mushrooms, ham, capsicum, chili peppers and onions)
13.Pizza's 26cm:
14. Anchovy (26cm, tomato, cheese, Anchovies)
15. Prosciutto (26cm, tomato, cheese and ham)
16.Chicken Specia (26cm, tomato, cheese, chicken and turkey pieces)
17.Vulcano (26cm, tomato, cheese, mushrooms and ham)
18. Peperone (26cm, tomato, cheese, mushrooms, ham, capsicum, chili peppers and onions)

Y ou can find working code on this gist.

Contents

e 1 Messy and convoluted: Sorting by hand
e 2 The reflective way: Sorting with BeanComparator

e 3 Getting there: Sorting with Google Guava' s ComparisonChain
e 4 Sorting with Apache Commons CompareToBuilder

Messy and convoluted: Sorting by hand

1/4

http://www.bennybottema.com/2013/06/21/ways-to-sort-lists-of-objects-in-java-based-on-multiple-fields/
https://gist.github.com/bbottema/b891b25bf56e0ccb1f83

Waysto sort lists of objectsin Java based on multiple fields - 06-21-2013
by Benny Bottema - http://www.bennybottema.com

Col | ections. sort(pizzas, new Conparator<Pizza>() {
@verride
public int compare(Pizza pl, Pizza p2) {
int sizeCrp = pl.size.conpareTo(p2.size);
if (sizeCmp !'=0) {

return sizeCnp;

}
int nrO&f Toppi ngsCnp = pl. nr O Toppi ngs. conpar eTo(p2. nr O Toppi ng
s);
if (nrOToppingsCmp '= 0) {
return nr O Toppi ngsCnp;
}
return pl. nanme. conpareTo(p2. nane) ;
}
1)

Thisrequires alot of typing, maintenance and is error prone.

Thereflective way: Sorting with BeanCompar ator

Conpar at or Chai n chain = new Conpar at or Chai n(Arrays. asLi st (
new BeanConpar at or ("si ze"),
new BeanConpar at or (" nr O Toppi ngs"),
new BeanConpar at or (" nane")));

Col | ections. sort(pizzas, chain);

Obvioudly thisisis more concise, but even more error prone as you loose your direct reference to the
fields by using Strings instead. Now if afield is renamed, the compiler won't even report a problem.
Moreover, because this solution uses reflection, the sorting is much slower.

Getting there: Sorting with Google Guava’'s ComparisonChain

Col | ections. sort(pizzas, new Conparator<Pizza>() {
@verride
public int compare(Pizza pl, Pizza p2) {
return ConparisonChain.start().conpare(pl.size, p2.size).conpa
re(pl. nr & Toppi ngs, p2.nr O Toppi ngs). conpare(pl. name, p2.nane).result(

)

2/4

Waysto sort lists of objectsin Java based on multiple fields - 06-21-2013
by Benny Bottema - http://www.bennybottema.com

/1l or in case the fields can be null:
/*
return Conpari sonChain.start()
.conmpare(pl.size, p2.size, Ordering.natural (). nullsLast(
))
.conmpare(pl. nrOX Toppi ngs, p2.nr O Toppi ngs, Ordering. natu
ral ().nullsLast())
.conmpare(pl. name, p2.name, Ordering.natural (). nullsLast(
))
.result();
*/

1)

Thisis much better, but requires some boiler plate code for the most common use case: null-values should
be values less by default. For null-fields, you have to provide an extra directive to Guavawhat to do in
that case. Thisis aflexible mechanism if you want to do something specific, but often you want the
default case (ie. 1, a, b, z, null).

Sorting with Apache Commons Compar eT oBuilder

Col | ections. sort(pizzas, new Conparator<Pizza>() {
@verride
public int compare(Pizza pl, Pizza p2) {
return new ConpareToBuil der (). append(pl. size, p2.size).append(
pl. nr O Toppi ngs, p2.nr O Toppi ngs) . append(pl. nane, p2.nane).toConpari so

n();
}
1)

Like Guava' s ComparisonChain, this library class sorts easily on multiple fields, but also defines default
behavior for null values (ie. 1, a, b, z, null). However, you can’t specify anything else either, unless you
provide your own Comparator.

Ultimately it comes down to flavor and the need for flexibility (Guava' s ComparisonChain) vs. concise
code (Apache’ s CompareToBuilder).

3/4

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/collect/ComparisonChain.html
http://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/CompareToBuilder.html

Waysto sort lists of objectsin Java based on multiple fields - 06-21-2013
by Benny Bottema - http://www.bennybottema.com

PDF generated by Kalin's PDF Creation Station

4/4

http://www.tcpdf.org

