
Ways to sort lists of objects in Java based on multiple fields - 06-21-2013
by Benny Bottema - http://www.bennybottema.com

Ways to sort lists of objects in Java based on multiple fields

by Benny Bottema - Friday, June 21, 2013

http://www.bennybottema.com/2013/06/21/ways-to-sort-lists-of-objects-in-java-based-on-multiple-fields/

As I was again trying to remember how to sort a list of objects in Java bases on multiple keys, I had the
luminous idea to finally write it down.

We have a list of pizza’s, and I want them sorted according to size, number of toppings and furthermore
by name. This means that there will be groups ordered by size and within those groups the pizza’s are
ordered into groups by number of toppings and in those groups the pizza’s are ordered by name.

We want to end up with a list like this:

1.Pizza’s 34cm:
2.Anchovy (34cm, tomato, cheese, Anchovies)
3.Prosciutto (34cm, tomato, cheese and ham)
4.Chicken Special (34cm, tomato, cheese, chicken and turkey pieces)
5.Vulcano (34cm, tomato, cheese, mushrooms and ham)
6.Peperone (34cm, tomato, cheese, mushrooms, ham, capsicum, chili peppers and onions)
7.Pizza’s 30cm:
8.Anchovy (30cm, tomato, cheese, Anchovies)
9.Prosciutto (30cm, tomato, cheese and ham)

10.Chicken Special (30cm, tomato, cheese, chicken and turkey pieces)
11.Vulcano (30cm, tomato, cheese, mushrooms and ham)
12.Peperone (30cm, tomato, cheese, mushrooms, ham, capsicum, chili peppers and onions)
13.Pizza’s 26cm:
14.Anchovy (26cm, tomato, cheese, Anchovies)
15.Prosciutto (26cm, tomato, cheese and ham)
16.Chicken Special (26cm, tomato, cheese, chicken and turkey pieces)
17.Vulcano (26cm, tomato, cheese, mushrooms and ham)
18.Peperone (26cm, tomato, cheese, mushrooms, ham, capsicum, chili peppers and onions)

You can find working code on this gist.

Contents

1 Messy and convoluted: Sorting by hand
2 The reflective way: Sorting with BeanComparator
3 Getting there: Sorting with Google Guava’s ComparisonChain
4 Sorting with Apache Commons CompareToBuilder

Messy and convoluted: Sorting by hand

 1 / 4

http://www.bennybottema.com/2013/06/21/ways-to-sort-lists-of-objects-in-java-based-on-multiple-fields/
https://gist.github.com/bbottema/b891b25bf56e0ccb1f83

Ways to sort lists of objects in Java based on multiple fields - 06-21-2013
by Benny Bottema - http://www.bennybottema.com

Collections.sort(pizzas, new Comparator<Pizza>() {
 @Override
 public int compare(Pizza p1, Pizza p2) {
 int sizeCmp = p1.size.compareTo(p2.size);
 if (sizeCmp != 0) {
 return sizeCmp;
 }
 int nrOfToppingsCmp = p1.nrOfToppings.compareTo(p2.nrOfTopping
s);
 if (nrOfToppingsCmp != 0) {
 return nrOfToppingsCmp;
 }
 return p1.name.compareTo(p2.name);
 }
});

This requires a lot of typing, maintenance and is error prone.

The reflective way: Sorting with BeanComparator

ComparatorChain chain = new ComparatorChain(Arrays.asList(
 new BeanComparator("size"),
 new BeanComparator("nrOfToppings"),
 new BeanComparator("name")));

Collections.sort(pizzas, chain);

Obviously this is is more concise, but even more error prone as you loose your direct reference to the
fields by using Strings instead. Now if a field is renamed, the compiler won’t even report a problem.
Moreover, because this solution uses reflection, the sorting is much slower.

Getting there: Sorting with Google Guava’s ComparisonChain

Collections.sort(pizzas, new Comparator<Pizza>() {
 @Override
 public int compare(Pizza p1, Pizza p2) {
 return ComparisonChain.start().compare(p1.size, p2.size).compa
re(p1.nrOfToppings, p2.nrOfToppings).compare(p1.name, p2.name).result(
);

 2 / 4

Ways to sort lists of objects in Java based on multiple fields - 06-21-2013
by Benny Bottema - http://www.bennybottema.com

 // or in case the fields can be null:
 /*
 return ComparisonChain.start()
 .compare(p1.size, p2.size, Ordering.natural().nullsLast(
))
 .compare(p1.nrOfToppings, p2.nrOfToppings, Ordering.natu
ral().nullsLast())
 .compare(p1.name, p2.name, Ordering.natural().nullsLast(
))
 .result();
 */
 }
});

This is much better, but requires some boiler plate code for the most common use case: null-values should
be values less by default. For null-fields, you have to provide an extra directive to Guava what to do in
that case. This is a flexible mechanism if you want to do something specific, but often you want the
default case (ie. 1, a, b, z, null).

Sorting with Apache Commons CompareToBuilder

Collections.sort(pizzas, new Comparator<Pizza>() {
 @Override
 public int compare(Pizza p1, Pizza p2) {
 return new CompareToBuilder().append(p1.size, p2.size).append(
p1.nrOfToppings, p2.nrOfToppings).append(p1.name, p2.name).toCompariso
n();
 }
});

Like Guava’s ComparisonChain, this library class sorts easily on multiple fields, but also defines default
behavior for null values (ie. 1, a, b, z, null). However, you can’t specify anything else either, unless you
provide your own Comparator.

Ultimately it comes down to flavor and the need for flexibility (Guava’s ComparisonChain) vs. concise
code (Apache’s CompareToBuilder).

 3 / 4

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/collect/ComparisonChain.html
http://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/CompareToBuilder.html

Ways to sort lists of objects in Java based on multiple fields - 06-21-2013
by Benny Bottema - http://www.bennybottema.com

PDF generated by Kalin's PDF Creation Station

Powered by TCPDF (www.tcpdf.org)

 4 / 4

http://www.tcpdf.org

